If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2=-18X+81
We move all terms to the left:
X^2-(-18X+81)=0
We get rid of parentheses
X^2+18X-81=0
a = 1; b = 18; c = -81;
Δ = b2-4ac
Δ = 182-4·1·(-81)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18\sqrt{2}}{2*1}=\frac{-18-18\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18\sqrt{2}}{2*1}=\frac{-18+18\sqrt{2}}{2} $
| 4^y-2=1/256 | | (2x)2+5X+2=77 | | -6x=-125 | | P(−3,6);m=1,−2,−12 | | x=-15=-7 | | 0.5y/(4/9)=(y+3)/8 | | 2(5x-11)=3x+20 | | 6x=6=48 | | 0.35+10x=0.10 | | (2x+40)=80 | | 0.10+0.35=10x | | 7x-3(2x-5)=(2+3x) | | x-4=66-2(x-1) | | 0=16+4(m-60 | | 2=g4− 1 | | 5=2b−1 | | 3r-2=12(r=8) | | 40x+20=45+10 | | 7+–3s=4 | | 4x+12+9x-4=6x+10 | | 4x+12+9x-4=6x+1- | | 5x-20=130+2x | | (4x+12)+(9x–4)=(6x+10) | | 4x+8x-6=6 | | 6-2/3x+5=4x | | 6+6x=12x-6X+4 | | x^2+1=67 | | 6m-30=4m+60 | | 5x+12-2=5x+8 | | 6y+9-7=4y+12 | | -t-5-2t=-3-4 | | 5x-18+23+90=180 |